Erythrocytes are the major intravascular storage sites of nitrite in human blood.
نویسندگان
چکیده
Plasma levels of nitrite ions have been used as an index of nitric oxide synthase (NOS) activity in vivo. Recent data suggest that nitrite is a potential intravascular repository for nitric oxide (NO), bioactivated by a nitrite reductase activity of deoxyhemoglobin. The precise levels and compartmentalization of nitrite within blood and erythrocytes have not been determined. Nitrite levels in whole blood and erythrocytes were determined using reductive chemiluminescence in conjunction with a ferricyanide-based hemoglobin oxidation assay to prevent nitrite destruction. This method yields sensitive and linear measurements of whole blood nitrite over 24 hours at room temperature. Nitrite levels measured in plasma, erythrocytes, and whole blood from 15 healthy volunteers were 121 plus or minus 9, 288 plus or minus 47, and 176 plus or minus 17 nM, indicating a surprisingly high concentration of nitrite within erythrocytes. The majority of nitrite in erythrocytes is located in the cytosol unbound to proteins. In humans, we found a significant artery-to-vein gradient of nitrite in whole blood and erythrocytes. Shear stress and acetylcholine-mediated stimulation of endothelial NOS significantly increased venous nitrite levels. These studies suggest a dynamic intravascular NO metabolism in which endothelial NOS-derived NO is stabilized as nitrite, transported by erythrocytes, and consumed during arterial-to-venous transit.
منابع مشابه
RED CELLS Erythrocytes are the major intravascular storage sites of nitrite in human blood
Plasma levels of nitrite ions have been used as an index of nitric oxide synthase (NOS) activity in vivo. Recent data suggest that nitrite is a potential intravascular repository for nitric oxide (NO), bioactivated by a nitrite reductase activity of deoxyhemoglobin. The precise levels and compartmentalization of nitrite within blood and erythrocytes have not been determined. Nitrite levels in w...
متن کاملATVB In Focus Nitric Oxide Redux
The ability of oxyhemoglobin to inhibit nitric oxide (NO)-dependent activation of soluble guanylate cyclase and vasodilation provided some of the earliest experimental evidence that NO was the endothelium-derived relaxing factor (EDRF). The chemical behavior of this dioxygenation reaction, producing nearly diffusion limited and irreversible NO scavenging, presents a major paradox in vascular bi...
متن کاملUnraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics.
The ability of oxyhemoglobin to inhibit nitric oxide (NO)-dependent activation of soluble guanylate cyclase and vasodilation provided some of the earliest experimental evidence that NO was the endothelium-derived relaxing factor (EDRF). The chemical behavior of this dioxygenation reaction, producing nearly diffusion limited and irreversible NO scavenging, presents a major paradox in vascular bi...
متن کاملAlternation in Erythrocyte Enzyme Antioxidant Activity during Blood Storage
Background: Blood is permanently exposed to oxidation stress and therefore has a high antioxidants capacity. Many different factors increasing the demand for the antioxidant capacity can be observed in the stored blood of donors. Consequently, damage to erythrocytes by free radicals may occur. So it is useful to control the alternation of anti-oxidant enzymes in stored blood at different days o...
متن کاملRed blood cells storage lesion: the effect of blood donation time on biochemical parameters
Abstract Background and Objectives There is a circadian rhythm and diurnal variation in the redox capacity in blood plasma and there is a decrease in antioxidant capacity (TAC) during the RBCs storage in blood banking. So it is possible that donated blood, based on donation time, has a different antioxidant capacity and as a result a different biochemical response during storage. This study at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 106 2 شماره
صفحات -
تاریخ انتشار 2005